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ABSTRACT: We propose two methods for determining
the change [AK] in the linecar stiffness properties of a
structure through measurement of several of the lower
modes of free vibration. The problem we consider is the
following: assumed given is a baseline undamped N degree
of freedom linear structural dynamics model for which the
system mass matrix, stiffness matrix, natural frequencies.
and mode shapes are known. It is assumed that due to
aging, damage or other mechanisms, the stiffness
properties are altered in a localized manner, and that the
location of this property change is known. The objective is
to determine the change [AK] in the stiffness matrix by
measuring m of the lower modes at some number n > m
coordinates. Two methods are proposed for this purpose.

The first method utilizes “damage Ritz vectors” or
DRV’s to obtain estimates for the expanded (N-
dimensional) measured mode shapes. The DRV is defined
in such a way that it is directly related to the localized
damage. Expressing the expanded measured mode shapes
of the altered system as linear combinations of the
undamaged mode shapes and the DRV turns out to provide
a simple yet accurate way to do mode shape expansion. The
DRV mode shape expansion is combined with an iterative,
residual - based scheme for estimating the stiffness change
[AK] and for updating the expanded mode shapes. An
example showing quick, accurate convergence is presented
for an eight degree of freedom spring mass model.

The second updating method uses a reduced
system model of the same dimension m as the measured
modes, so that mode shape expansions are obviated. An
updating procedure is proposed in which two quantities are
determined iteratively: 1) the stiffness property change
[AK] of the full, N-DOF model and 2) the slave/master
coordinate transformation needed to do the model reduction
for the altered system. The method converges quickly and
accurately for the example case presented.

NOMENCLATURE
{b} damage location vector (Nx1)
K} stiffness matrix, undamaged system (NxN)

ALos Alamos National Laboratory
ESA- EA MS P-946
Los Alamos, NM 87545

[AK] change in stiffness matrix

Kyl altered stiffness matrix = {K] - [AK]

M] mass matrix, damaged and undamaged systems
[Kssl, Koml, [Kems], [Kem] partitioned stiffness sub-matrices

| ). [K] reduced mass, stiffncss matrices (mxm)

{r} damage Ritz vector

{R} residual vector

[R] reduction matrix

[T} slave/master coordinate transformation matrix
{x} model coordinate vector (Nx1)

{x}, slave coordinate vector (sx1)

{x}m  master coordinate vector (mx1)
[W] mode shape expansion matrix

6] DRV augmented modal matrix
{6} undamaged system mode shape

{y} damaged system mode shape
i rth mode property

{#}.[*] reduced mode shape, modal matrix
{71, [ expanded mode shape, modal matrix

o, rth mode natural frequency, baseline system
Oy rth mode natural frequency, damaged system
o scalar change in spring stiffness

m number of measured modes

n number of measured coordinates

N degrees of freedom, full model

S number of slave degrees of freedom

1. INTRODUCTION

The baseline or “undamaged” structural system is assumed
to be represented by the undamped linear model

IMI{x} + IKI{x} = {0} (1
where the NxN symmetric mass and stiffness matrices [M]
and [K] are assumed known, as are the natural frequencies
o, and mode shapes {¢},, where 1 is the mode number. It is
assumed that the m lowest frequency modes of the damaged
or altered structure arc reconstructed experimentally
through measurcment of n coordinates, with n assumed
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greater than m. Thus, the available data are the m
measured mode shapes {{/} , of dimension nxi, and the

associated natural frequencies . The model updating
techniques often require that the measured mode shapes be
expanded to the full system dimension N before these
measured modes are used to do model updating. The
expanded mode shapes of the damaged or altered system

are denoted by {\fﬂ}r . Assuming we have a reliable way to

expand the measured mode shapes, the residuals for each
mode are defined as

(R), =(K]-o a M)}, =[aK}0}, @
The modal residual defined in equation (2) can be
calculated, as all terms are known. If the measured mode
shape expansion is done exactly, then the modal residual
vector defined in equation (2) will have zero entries except
in those slots for which the stiffness matrix is altered.
Ideally the nonzero residual entries in the residual vectors
will thus identify the location of the damage. If the mode
shape expansion is not done exactly, however, then
additional contributions to the residuals will be made by the
errors in the expanded mode shapes. Thus, in general the
residuals will have contributions from both the change
|AK] in stiffness and from any errors in the expansion of
the measured modes. One needs to extract that portion of
the residual which is due to property change in order to
calculate the change in system properties.

One direct method for estimating the change [AK] in the
stiffness matrix is the minimum rank perturbation theory
(MRPT) relation [1]

. -1 -

[AK]:{R}I({R}I,l {\p}r) (R} " @)
where the calculation will generally produce a different
result [AK] for each measured mode. Some related updating
methods are discussed in [2-5], and [6,7] and references
cited therein are also relevant.

A number of methods have been proposed for doing
expansion of the measured modes. See, for example,
Levine-West et al [8] and Alvin [2]. Here we use static Ritz
vectors as a way to do the modal expansion. Ritz vectors
have also been used extensively by Cao and Zimmerman
[4,9]. In their procedure the static Ritz vector is calculated
as the coordinate displacement pattern resulting when a set
of static loads is applied at the same location as the
vibration exciters which are eventually used to excite the
structure. A sequence of orthonormal dynamic Ritz vectors
is then calculated, using the static Ritz vector as the
generator. The result is a set of orthogonal basis vectors
which can be used to represent the measured mode shapes.
Cao and Zimmerman have also presented a way to

determine the set of Ritz vectors from experimental data
[9]. The Ritz vectors used in [4,9] are one set of basis
vectors one could use to approximate the measured mode
shapes. The more obvious choice for this set of trial vectors
would be the undamaged system mode shapes; Cao and
Zimmerman concluded, however, that the Ritz vector set
provides a better basis than do the undamaged mode
shapes. In our work we also utilize Ritz vectors, but we
define them so that they characterize the damage, that is,
they cssentially define how the damage alters the mode
shapes (Cao and Zimmerman’s Ritz vectors are not related
to the damage). The construction we use follows the work
of Chu and Milman [10], who used Ritz vectors very
effectively to characterize the effect of isolated, localized
damping/stiffness elements added to a large space truss in
only a few locations.

The rest of this paper contains the following sections:
Section 2 describes the mode shape expansion procedure
using “damage Ritz vectors” or DRV’s. Section 3 describes
an iterative model updating method utilizing the Ritz
vector based mode shape expansion. Section 4 describes an
updating procedure based on use of the reduced dynamic
model of the damaged structure. Section 5 contains
concluding remarks.

2. DAMAGE RITZ VECTOR - BASED MODE SHAPE
EXPANSION

To fix ideas we consider the eight degree of freedom
spring-mass system shown in Figure 1, for which all of the
undamaged system masses and stiffncsses have values of
unity. This examplc will be used throughout this paper. For
reference the two lowest mode shapes and frequencies of
this undamaged system are the following:

()1 = [.0891 .1752 2554 3268 3871 4342 4666 4830]"
(b}2=[.2554 4342 483 3871 1752 -.0891 -.3268 -.4666]"
o* = 0.0341 wy” =0.2996

The damage Ritz vector or DRV {r} is defined following
the construction of Chu and Milman [10], as follows:
assume that the system stiffncss change is due to a
reduction in the stiffness of a single “damaged” spring, the
location of which is assumed known. Apply equal and
opposite unit static loads to the two masses to which the
damaged spring is connected. The load vector {b} which
results is a “damage location vector,” because its entries
identify the location of the damaged spring. For example, if
spring 5, which connects the fourth and fifth masses, is
damaged, then {b} = [0 00 1 -1 0 0 0]". The DRV {r} is
the static displacement pattern resulting from the
application of the static load {b},

{r} = [K]"{b} #
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based on the undamaged stiffness matrix [K]. A useful
property of this construction is that the change [AK] in the
stiffness matrix is given for the system of Figure 1 by {10]

[AK] = a{b}{b}" ©)
where o is a proportionality constant which defines the
change in spring stiffness. Equation (5) has three nice
features: 1) the correct sparseness in [AK] is automatically
preserved, 2) if the damage location can be identified, so
that {b} is determined, then there is a single unknown
proportionality constant to be determined, and 3) use of
equation (5) to calculate residuals according to the right
hand side of equation (2) will automatically put zerocs
where they should be in the residual vectors. Equation (5) 1s
used in a number of ways in the sequel.

The basic idea we use for mode shape expansion is to
express the damaged system mode shapes as a linear
combination of the original, undamaged system mode
shapes, plus a Ritz vector which characterizes the cffect of
the damage [11]. More than one Ritz vector can be used,
and this may be necessary for accurate expansion of higher
modes. This construction seems natural, because the
damaged system mode shape is likely to be similar to the
undamaged mode shape, with the Ritz vector used
cssentially to characterize the change in the mode shape
due to the damage.

Our mode shape expansion method is illustrated here for
the system of Figure 1. Assume the damage consists of a
25% reduction in the stiffness of spring 5 which connects
masses 4 and 5. Then the first two mode shapes and natural
frequencies of the damaged system are the following:

{wh = [.0856 .1683 2455 3147 3937 4390 .4704 4864]"
fyly = [.2565 4398 4976 4135 .1441 -.0991 -.3140 -.4393]"
" =0.0329 wy? = 0.2583

Assume the experimental results consist of measurement of
the three coordinates x;, xs and x;, so that the measured
data are the aforementioned natural frequencies and the
reduced modal matrix

1683 4398
[V] = | 3937 1441
4704 -3140

There is assumed to be zero measurement ecrror. The
following two steps are executed to do the mode shape
expansion: first determine the particular linear combination
of the reduced versions of the Ritz vector and the first two
undamaged mode shapes, such that the preceding
measured, reduced mode shapes are exactly reproduced.
That is, put

[¥] = [6]w] (6)

where the square matrix [5]:[{$}1 {$}2 {?}] Solving

equation (6) for the matrix [W],

[w] = [o] l[\v] )
This result for [W], if used in equation (6), will exactly
reproduce the reduced measured mode shapes of the
damaged system. The second step in the mode shape
expansion is to apply the [W] given by equation (7) to
obtain the expanded mode shapes as the same linear
conbination of the first two undamaged mode shapes and
the Ritz vector, that is, the mode shape expansion is
defined by

9] = (Iwl - FfE W @

In the present example (25% reduction in spring 5
stiffness) the expanded mode shapes calculated from
equation (8) turn out to be the following:

{\i/}l = [.0856 .1683 2456 3145 3931 4388 .4704 .4864]"

{\|/ , = 12561 4398 .5002 4232 1441 -.0956 -313 -4414]"

Our procedure is similar to what Levine-West ct al do in
their mode shapc expansion procedure using orthogonal
procrustes [8]: they find a transformation based on the
reduced, measured modes, then they apply this same
transformation to the expanded version of the problem.
Comparison with the exact. damaged system mode shapes
{yw}h and {y}, shows the mode shape expansion done here
to be reasonably accurate. The reason for the accuracy here
is that the stiffness reduction in spring 5 causes an increase
in the relative displacement between masses 4 and 5 in the
lower modes. This increased relative displacement, which
occurs only between masses 4 and 5, amounts to a rigid
body motion. Thr Ritz vector here is {r} = [0 00011 1
11", which is a rigid body motion of masscs 5 through 8.
Thus, the Ritz vector is essentially proportional to the
change in the mode shape due to the damage.

3. DRV BASED MODEL UPDATING

The mode shape expansion described in Section 2 provides
an initial approximation for the expaned mode shapes of
the damaged system. The associated change [AK] in the
stiffness matrix is then determined iteratively using the
steps described here, which are applied on a mode by mode
basis. The procedure presented here is based on a
“splitting” of the residual (equation (2)) into a part due to
the change in system stiffness matrix and a part due to
error in the mode shape. This latter “mode shape error
induced” part of the residual is used to update the expanded
mode shape. A key limiting assumption is that the damage
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location is known (at least approximately), for example,
through application of one of the methods described in
[6.7]. The steps in our iterative model updating calculation
are summarized below.

Starting with the rcsidual in the form {R}r

:[AK]{\if}r,

use equation (5) for [AK], so that the rth mode residual is

written as

Ton

(R}, = afo}o} {¥}, ©)
where {b} is specified from the known damage location.
Premultiply equation (9) by {\i\t}r'[‘ and solve the resulting

scalar equation to obtain the estimate &,

o = {\il}rT{R}r
(i), (o} (o} {0,

where in equation (10) {R}, is calculated via the left hand

part of equation (2). Use the estimate & to estimate the
change in the stiffness matrix as

(10)

[4R] = a(o}p)’ (1)

Obtain an updated calculation of the residual as

{R}r = [AK]{\y}r (12)
Equation (12) is considered to be an estimate of the exact
residual, that is, the part of the residual due solely to the
change in the stiffness matrix. Equation (12) is used to
obtain an estimate of that part {AR}, of the residual which

is due to the error in the expanded mode shape {\[/ }r \

- o) 2 -
(R}, = {R} -(K]-o. M)}, (13)
The expanded mode shape error induced residual {AR} . s
then used to obtain an incremental correction {A\y}r to the

expanded mode shape as

{A\p ([I\]~m er [M]) {AR (14)
The updated expanded mode shape is obtained as the
normalized version of {y} +{Ay} . At this stage onc

iteration is complete and the calculation sequence of
equation (10) through equation (14) is rcpeated until
suitable convergence is achieved.

The sequence of calculations is summarized in Appendix |
for damage consisting of a 10% reduction in the stiffness of
spring 3 (corresponding to an exact value o = 0.10). The
updating procedure using measured mode 1 produces an

initial estimate of & = 0.1006, which is essentially exact to
begin with, due to the accuracy of the first expanded mode
shape. Appendix 1 shows results for the mode 2
calculation. The first two columns are the exact mode shape
and the approximation obtained using the DRV mode shape
expansion. The third column is the residual calculated
from equation (2). This is used in equation (10) to obtain
the first approximation & = 0.1261. Then equation (12)
yields the estimate of the exact residual shown in column 4
of Table 1. Column 35 contains the estimate {AR}2 given

by equation (13). Column 6 contains {A\y} 2 from equation

(14), and the resulting updated expanded mode shape,
essentially exact, is in column 7. The updated & which
results is then found to be & = 0.1015, so the convergence

is rapid in this example.
4. MODEL REDUCTION BASED UPDATING

In this section we propose a second updating scheme which
utilizes a reduced dynamic model having the same number
of degrees of freedom as the number m of measured modes.
In this scheme m of the n measured coordinates are selected
as master degrees of freedom, in terms of which the
reduced model is formulated. A procedure is presented for
finding the change [AK] in the system stiffness matrix by
doing iterative calculations using the reduced model. One
advantage of this type of procedurc is that modc shape
expansion is obviated, so that errors induced by inexact
mode shape expansion are not involved.

4.1 Model Reduction Technique

The model reduction method we use is described by Burton
and Young [12]. This method is similar in spirit to the
Guyan reduction [13,14]. Unlike the Guyan reduction,
however, our method preserves cigenstructure exactly, that
is, the m natural frequencies and mode shapes calculated
for the reduced model are the same as the lowest m modes
of the full, N degree of freedom model. Here the relevant
results of the model reduction, described in [12, 15], are
stated. Assume, as in the example of Figure 1. that the
mass matrix is the identity matrix. Partition the coordinate
vector {x} into the so called master and slave coordinate
vectors {X}, and {x},, where the m coordinates in {x}, arc
chosen from among the n measured coordinates. Then
partition the stiffness terms in cquation (1) as follows:

K = [fe) ki {"}}L}

The reduced model of the system is then of the form

[w@)s, + [idn = {0} (15)
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where [fii| and [E] are the mxm reduced system mass and

stiffness matrices. In order to define the reduced model of
equation (15), one needs a slave/master coordinate
transformation matrix [T], defined so that

{xhs =[Thxd (16)
If the sxm matrix [T] is specified. then the reduced system
matrices are given by

@] = [R]'[M]R] an

[11] = [R]"[K][R] (18)

where the Nxm “reduction matrix” [R] is defined as

ool e

The crux of any model reduction method based on equation
(16) for elimination of unwanted degrees of freedom is the
specification of an appropriate transformation matrix [T].
In [12,15] it is shown that the model reduction preserves
exactly the lowest m mode -eigenstructure if [T] is
determined as the solution to the implicit nonlinear matrix-
algebraic equation

(1] = (K] [T )™ (Kemo] - [T k) 20)

which applies if [M] is the identity matrix; the more
general version of equation (20) for arbitrary [M] is
discussed in [12,15]. Note that if [T] is set to zero on the
right hand side of equation (20), the relation reduces to the
Guyan transformation [13,14]. It turns out that, in terms of
the m lowest complete mode shapes of the system being
reduced, the transformation matrix can also be expressed as

(1] = [ole] @D
where [¢]m is the mxm matrix of master degree of freedom

eigenvectors for the lowest m modes, and where [¢]_ is the

sxm matrix of slave coordinates for the same modes. The
model reduction method can be applied to both the
undamaged and the damaged systems. The damaged system
transformation matrix [T] will differ from the undamaged
system transformation matrix, as will thc reduced mass and
stiffness matrices for the two systems. For the damaged
system the transformation matrix [T] is unknown apriori,
as are the damaged system reduced mass and stiffness
matrices (note that the reduced mass matrix does not retain
the diagonal, identity form of the full system mass matrix).

4.2 Updating Via the Reduced Model

A model updating method which uses the reduced dynamic
model is described here. We first note that the damaged
system eigenproblem may be stated for the rth mode as

([K] -[2K] - CI.Z[M]){\V}r = {0} (22)
The reduced model eigenproblem for the damaged system
may be stated in the form

(R]"[KJR] -0 o [R] [M][R]

~o[R]"[B[RD{¥}, = {0}
where equation (5) has been used for [AK], [B] = {b}{b}".
and the reduced system mass and stiffness matrices have
been written out as defined in equations (17) and (18).
Assuming the damage location to be known, the unknowns
in equation (23) are the damaged system reduction matrix
[R] (due to the damaged system transformation matrix [T]
being unknown) and the scalar o, with o, and {\T/}

(23)

r

known from measurement.

In the model updating procedure described here, it is
necessary to determine iteratively the scalar oo (which
specifies [AK]) and the damaged system transformation
matrix [T]. The following steps are executed in the
iteration:

1) Specify an initial approximation for the
transformation matrix [T]. Obvious choices include the
undamaged system transformation matrix or the
transformation matrix associated with the DRV based mode
shape expansions of the m lowest modes. Either of these
initial approximations can be found from equation (21).

2) Use equation (23) to obtain an estimate o« by
determining the value & which renders zero the
determinant of the coefficient matrix in equation (23). This
result provides an estimate of the change [AK] in the
system stiffness matrix.

3) Usc the cstimated [AK] to update the four
system submatrices [k |, [K om | [Kms |- and [K i |-

4) Use these updated submatrices to obtain an
updated approximation to the damaged sysiem
transformation matrix [T]. This is done by solving equation
(20) via Gauss-Seidel iteration, starting with the initial
approximation for [T], along with the updated submatrices.
in the right hand side of equation (20) to produce an
updated approximation for [T], which is then used on the
right hand side of equation (20) to obtain another updated
approximation, etc., until convergence is achieved. The
resulting solution for [T] is the damaged system (rans-
formation matrix (and the reduction matrix [R]) which is
consistent with the approximation [AK] from step 2.
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5) The updated reduction matrix [R] is inserted
into equation (23) and the steps of the iteration arc repeated
until suitable convergence is achieved.

The reduced model based updating procedure is illustrated
for the system of Figure 1 for the following case: the
damage consists of a 20% reduction in the stiffness of
spring 7, which connects masses 6 and 7. There are
assumed (o be three measured coordinates: Xs, X7, and Xs,
which are the master degrecs of freedom in the three degree
of freedom reduced model to be used to do the model
updating. This is actually a poor choice of master degrees
of freedom, which would normally be more evenly spaced
through the structure. The numerical results are shown in
Appendix 2 for a calculation based on the first mcasured
mode. In Appendix 2 the matrices [¢]n and [¢], for the
undamaged system, [y}, and [y]; for the damaged system,
and the transformation matrices [T] for the undamaged and
damaged systems are first shown, for reference. Use of the
undamaged transformation/reduction matrices in equation
(23) yields an estimate & = 0.225 needed to render zero
the determinant of the coefficient matrix in equation (23).

This estimate for & leads to an estimate for [Aﬁ]

according 1o equation (11). This estimated stiffness matrix
change is then used to update the stiffness sub-matrices in
equation (20), which is solved iteratively to yield the
updated transfornation matrix shown in Appendix 2 (result
of five iterations). This updated [T], when inserted into
cquation (23), yields an updated value & = 0.2003, which
is cssentially exact.

5. CONCLUDING REMARKS

Three things have been presented: 1) a damage Ritz vector
based mode shape cxpansion method, 2) a companion
model updating method in which the stiffness matrix
change |AK| and the expanded mode shapes are iteratively
refined, and 3) an iterative updating method based on use
of the reduced model of the damaged system. A limitation
of the work is that the damage location is assumed to be
known. Further work is needed to apply the methods to
more rcalistic systems, to study the accuracy and
convergence properties, to develop error estimates, and to
identify the damage location as part of the procedure. The
results presented indicate that the methods presented are
promusing.
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Figure 1: The cight degree of freedom system. All masses and stiffnesses of the undamaged system are unity.

X X2 X3 X4 Xs X6 X7

Appendix 1: Numerical results for the updating example of Section 3 of tex(; mode 2 calculation.

{W} zcxacl {\V}ZDRV {R} 2 {R}Zex {AR}2 {A‘Il} 2 {\V}zupdalc
2531 2535 0005 0 -.0005 .0062 2531
4305 4305 -.0069 -.0056 0013 0111 4305
4844 4856 .0070 .0056 -0014 0114 4844
3880 .3883 -.0005 0 0005 .0097 .3880
1754 1754 -.0003 0 .0003 0045 1754
-.0897 -.0898 -.0001 0 .0001 -.0022 -.0897
-.3279 -.3280 0000 0 0000 -.0085 -.3229
-.4680 -.4680 0000 0 .0000 -0122 -.4680

Appendix 2: Numerical results for the updating example of Section 4 of text.

(0891 -2554 3871 ] 7453 -1711 1001

4342 0891 -3268 1752 4342 4666 1174 -2642 1533
[0],, =| 4666 3268 0891 | [6] =|2554 -4830 1752 [T]= | 1158 -2496 1424
4830 4666 4342 3268 —3871 -2554 8107 —1594 8783

| 3871 -1752 —4830] 3874 5893 3012

undamaged system

0883 2434 3802 | 6447 -1725 1116

4308 0492 -3776 1736 -4172 4733 1021 -2680 1723
[W],, =| 4713 3429 0995 | [y] =|2530 -4719 2092 [T]=]1016 -2555 1623
4878 4800 4061 3239 -3919 -2129 7218 —1650 1023

measured data 73839 -1999 “4743‘ 3528 —6.159 30622

damaged system
6355 -1742 1142
1007 -2706 1764
[T]= {1002 -2580 1662
7119 1666 1049
3486 -6219 3724

damaged system, updated
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